電子流體粉顯示器 (本文發表於 2009/04 化工技術 Vol.193)
雷射印表機成像技術中,靜電傳輸碳粉的原理,還可運用在電子紙顯示器(electronic paper display)中。常見的電子紙技術包括旋轉球(twisting ball)、電泳動(electrophoretic)、雙穩態液晶(bistable LCD)、電潤濕(electrowetting)及流體粉等[26]。電子流體粉顯示器的結構示意圖,如圖13所示。其原理類似電泳動的電子紙,只是顯示顆粒換成帶電碳粉,且電泳液被空氣取代。利用顯示元件上下電極產生的電場,可以驅動帶電碳粉往不同電極移動。藉由電極的轉換,便可以得到不同顏色之顯像碳粉的圖像[27]。同時,利用驅動電壓的大小,可以控制圖像顏色的深淺,藉此表現出灰階的層次,如圖14。目前,此技術的主要發展廠商包括Bridgestone、Fuji Xerox及Chiba
University等。而Bridgestone已經開始量產銷售,並且利用彩色濾光片發展出彩色之流體粉顯示器。
 |
| 圖13、電子流體粉顯示器的結構示意圖[28]。 |
 |
| 圖14、電子流體粉顯示器[28]。 |
由於流體粉顯示器中的顯像顆粒並無液體間隔分散,為了避免流體粉顆粒團聚。故需對顯像碳粉進行表面處理,使其能達到足夠的帶靜電量,以及能有效降低表面量提昇粉體流動性。所謂的流體粉,是指顯像碳粉的流動有如流體一般之意。一般的粉體流動差,故易堆疊成山狀(a);而流動像液體之流體粉,其流動就像水一樣會四散開來不會堆積(b),如圖15。流體粉粒徑約在10μm且窄粒徑分佈,可以採用傳統粉碎式碳粉(a)或化學式碳粉(b),也可是特殊表面結構之顆粒(c)及(d),如圖16。因為,顯像碳粉的帶電量及其流動性,會影響到顯示器顯影的驅動電壓。過高的驅動電壓,將不利於攜帶式電子產品的運用。目前,市售的流體粉顯示器其驅動電壓約在70-80 volt,而電泳動顯示器約在15 volt。因此,如何強化碳粉帶靜電量、提高碳粉的流動性及改善元件電性等,以達到降低驅動電壓的目的,是未來重要的課題。
 |
| 圖15、粉體流動性測試[28]。 |
 |
| 圖16、電子流體粉的SEM外觀[28]。 |
結語
藉由表面處理技術,
可以輕易的對碳粉表面進行機能性的改質。利用不同的機能材料特點,強化碳粉在列印輸出時的效能。本文除了分析傳統以無機奈米粉體進行碳粉表面處理的各種參
數影響外,並針對彩色化學碳粉的製程與表面處理技術提供相關資訊。此外,亦對其延伸應用之流體粉顯示器做一概述。新式化學碳粉製程提供化工人在雷射印表機
耗材產業上,一個可以發揮的新舞台。隨著彩色雷射印表機的日益普及,高效能的彩色碳粉需求將與日遽增。而新式化學碳粉的製程具有粒徑小且易調控、粒徑分佈
窄、形狀規則、以及可進行殼核或微膠囊化之表面處理等特點。因此,各雷射印表機生產廠商,皆將其視為高品質輸出耗材的不二人選。近年來,不但相關專利發表
熱絡,且運用化學碳粉的印表機機型也逐漸增多,各大廠商也陸續擴建化學碳粉廠以因應未來需求。依據各大廠所發表的機型分析得知,節能省碳的低溫定著、提昇
效率的高速列印、以及高光澤全彩寫真輸出等技術是未來發展趨勢。所以,如何有效利用兩相界面化學製程條件及機能性表面處理技術,來製備優質化學碳粉,將是
現在亟需解決的課題。
參考資料
- Weiss, D.S., “Handbook of Imaging Materials”, 2nd
ed., Marcel Dekker, New York, USA, Ch. 5, 173~208(2001).
- Wyhof, J.R., “Tutorial II
- OPC’s & Other Process Components”, 21th
Photoreceptor & Toner Conference, Santa
Barbara, California, USA, 2004.
- Kmiecik-Lawrynowicz, G.E., “An Update on
Chemical Toner Technology & Manufacturing - Principal Scientist”, 20th
Photoreceptor & Toner Conference, Session 3, Santa Barbara, California, USA, 2003.
- Kmiecik-Lawrynowicz, G.E., “An Update on
Chemically Produced Toner (CPT)”, 23th
Photoreceptor & Toner Conference, Session 6, Santa Barbara, California,
USA,
2006.
- Cormier, S., Rimai, D.S., and Quesnel, D.J., “The
Adhesion of Spherical Toner Particles to an Organic
Photoconductor-Contributions of van der Waals and Electrostatic Interactions”,
IS&T NIP18 Conference, San
Diego, California, USA, 45~48(2002).
- Schein, L.B., Czarnecki, W.S., Christensen, B., Mu, T.,
and Galliford, G., “Experimental Verification of the Proximity Theory of Toner Adhesion”, the Journal of Imaging
Science and Technology, Vol.48, No.5, 417~425(2004).
- Eida, A. and Shimizu, J., “Study on the Effects of Wax in
the Polyester Color Toner”, IS&T NIP16
Conference, Vancouver,
B.C., Canada
, 618~622(2000).
- Liu, M.H., Tsai, J.H., and Yang,
C.J., “Chemically Produced Toner Containing a Binary Polyester Binder”, IS&T
NIP24 Conference, Pittsburgh, Pennsylvania , USA, 63~66(2008).
- Shirai, E., Aoki, K., and Maruta, M., “The Toner for Low Energy Fusing by Using
Crystalline Polyester”, IS&T NIP18 Conference,
San Diego, California, USA,
354~361(2002).
- Tyagi, D., “Polyester vs.
Styrene- Binder Choice for Toners in Digital Printing”, IS&T NIP22
Conference, Denver, Colorado, USA,
172~175(2006).
- Tsuji, Y., Ugai, T., Hashimoto, A., and Fumita, H., “Process for Producing Toner Particles and Toner”, US Patent
number 6835521, 2004.
- Kmiecik-Lawrynowicz, G.E. and
Patel, R.D., “Toner Emulsion Aggregation Process”, US Patent number 5418108,
1995.
- Liu, M.H., Hsu, F.Y., and Yang,
C.J., “Preparation of Polymer Microspheres by Phase-Separation/ Aggregation
(PSA) Technique for Color Toner Applications”, IS&T NIP23 Conference, Anchorage, Alaska, USA, 256~269(2007).
- Maria, N.V. and Richard,
P.N., “Effect
of Metal Oxide Surface Additives on Xerographic Toner Powder Flow Cohesion and
Cohesion Aging Stability” IS&T NIP20 Conference, Salt Lake City, UT,
USA, 111~114(2004).
- Cabot, “CAB-O-SILTM
TG-C Series Treated Silicas for Toners”, 2008 catalog.
- Maria, R., Brandl, P., and Shirono, H., “Study of the Effect of External
Additives on Toner Performance” IS&T
NIP18 Conference, San Diego, California, USA, 278~283(2002).
- Inoue, A., Amano, Y., and Brandl, P., “Performance
Optimization of Functional Fumed Metallic Oxide Based External Additives for
Toner”, IS&T NIP21 Conference, Baltimore, MD, 558~560(2005).
- Kumar,
S., “Process Design and Optimization of
External Additive Blending on to Toner Surface”, IS&T NIP23 Conference, Anchorage, Alaska,
USA, 292~296(2007).
- Kiatkamjornwong, S. and Pomanam, P., “Synthesis
and Characterization of Styrene-Based Polymerized Toner and Its Composite for
Electrophotographic Printing”, J. Appl. Polym. Sci., Vol.89, 238~248(2003).
- Matsumura, Y., Burns, P., and Fuchiwaki,
T., “Encapsulated Emulsion Aggregation Toner for High Quality Color Printing”, IS&T NIP17
Conference, Fort Lauderdale,
Florida, 341~344(2001).
- Mori, H., Matsunaga, S.,
Kobayashi, K., Hyosu, Y., and Imai, E., “Process for Producing Toner by
Suspension Polymerization Method”, US Patent number 4804610, 1989.
- Ota, N., Imai, T., Saito, J., and Ogawa, T., “Process for Producing Toner through Suspension Polymerization”, US Patent number 5427885, 1995.
- Hayase, K., Nakamura,
T., and Chiba,
T., “Toner for Developing Electrostatic Image, Apparatus Unit and Image Forming
Method”, US Patent number 6002903, 1999.
- Jiang, L., Hu, N.X.,
Patel, R.D., Mychajlowskij, W., and Hopper, M.A., “Toner Coagulant Processes”, US Patent number
6495302, 2002.
- Fujino, Y., Ueda, N., Ojima, S., Nakamura, M., and Ueda, H., “Toner and Production Process for the Same”, US Patent
number 7175959, 2007.
- 劉明輝,「在電場下舞動的微米色球:新型列印技術–類紙式顯示器的應用」, 化工技術月刊,
9月號,第138期, 183~194(2004).
- Masuzawa, M., Yanagisawa,
M., Naijoh, Y., and Kitamura, T., “Electrophoretic Imaging Display Based on
Movement of Particles Using Two Driving Electrodes”, IS&T
NIP24 Conference, Pittsburgh, Pennsylvania , USA, 146~149(2008).
- Takagi, K., Kaga, N., and Tanuma, I.,
” Novel Type of Bistable Reflective Display (QR-LPD®) and
Material Design of Electronic Liquid Powder®”, IS&T NIP23 Conference, Anchorage, Alaska, USA, 624~627(2007).
0 意見 :
張貼留言